AAA Quarterly Review: Fuel Development at ANL

M.K. Meyer, D.C. Crawford Argonne National Laboratory July 10, 2002

Fuel Fabrication Status

- Fabrication of all metal fuel slugs complete
- Rodlet and capsule welding parameters being refined
 - Target: 100% acceptance
 - » Small size of rodlet specimens causes some problems with repeatability
 - » QA acceptance ~90%
 - Slight distortion of capsule end caps
 - Corrective actions pursued for both issues
- On target for December 2002 insertion

Metal Fuel Characterization

- Microstructural characterization proceeding
- Example: Pu-10Np-40Zr

Review of Pu-bearing IMF and MOX

- · 'Older' work
 - Fairly large database
 - Good work on ZrO₂, MgO-based fuels
- More recent Work
 - Paper studies and fabrication
 - No irradiation testing
- Advanced MOX
 - SUPERFACT experiment

Older IMF Work in the U.S. (pre-1970)

- Relevant past work mostly related to 'spike' elements for Pu burning in thermal systems for the Plutonium Utilization Program
 - Thermal Spectrum Fuel Irradiation Tests
 - » Al-Pu alloy fuel
 - » PuO₂/ZrO₂
 - » PuO₂/MgO
- 'Phoenix' whole core demonstrations (reactivity control using ²⁴⁰Pu)
 - Materials Test Reactor (MTR, 1958)
 - Plutonium Recycle Test Reactor (PRTR) + MOX (1963)
- Bettis Atomic Power Laboratory
 - ZrO₂-UO₂ fuels for Shippingport reactor (also CaO-ZrO₂, BeO, Al₂O₃, CeO₂)
- Miscellaneous fuels in thermal spectrum
 - PuN, PuC, PuO₂, PuO₂/graphite, PuO₂ silicate glass
 - Isotope targets, often Al matrix dispersions

Al-Pu Alloys

- Al-Pu dispersions similar to early Al-U research reactor fuel
 - Al-Pu eutectic at 15.6 wt% (~2 at%) Pu, 640°C
 - Hypoeutectic fuels ideal for thermal burning
 - » 3.35 wt% Pu content gives 95 vol% Al-0.27 wt% Pu matrix
 - Hypereutectic systems also studied
- Fabrication typically by extrusion/coextrusion
- Typically operate at high power density (~100 kW/m)
- Very high Pu burnup possible (90% FIMA)
- Pu-Al segregation must be controlled on fabrication
- Fuel centerline temperature limited to <400°C
- Corrosion resistance improved by Ni, Si, Ti

Al-Pu Alloy Irradiation Testing

- PRTR (Plutonium Recycle Test Reactor)
 - Goal: Suitability of Al-Pu for use in power reactors
 - 75 elements (1500 rods) 8.26 cm dia. x 2.51 m, 3 failures (1962)
 - Zircalloy cladding
 - » Fuel/clad gap required due to □_T mismatch
 - Powers to 39 kW/m; fuel center temps. to ~400°C
 - » MTR/ETR capsule tests to 520°C, stable □-structure
 - Maximum average burnup was 65%/ peak 87%
- MTR (Materials Test Reactor)
 - Full 'Phoenix' core loading in 1958
 - Aluminum clad Al-14 wt% Pu
 - Plate-type fuel
 - Burnup to 75% FIMA
- EBWR (Experimental Boiling Water Reactor)
 - 10 rods, 3.35 wt% plutonium (8 and 26 wt% ²⁴⁰Pu)
 - 2 wt% Ni
- USAEC HW-69200, IDO-16508, HW-70158, HW-SA-2425

ZrO₂-PuO₂ Fuels

- Plutonium Utilization Program
- Zircalloy clad 1.44 cm OD specimens in ETR
- 4 ZrO₂-1.93 wt% PuO₂, 4 ZrO₂-9.76 wt%PuO₂
 - Cubic + monoclinic phases
- Irradiated in ETR
 - Power: 29-95 kW/m
 - Temperature: 1400 3700°C (±20%)
 - **Burnup: 8 43%**
- One failure at 95 kW/m
 - 1/5 of fuel molten
 - No loss to coolant
- USAEC HW-SA-3128

MgO-PuO₂ Fuel Irradiation Testing

- Zircalloy clad specimens in ETR
 - 4 MgO-2.71 wt%Pu, 4 MgO 12.95 wt% Pu, 1.44 cm OD
 - Sintered 1600°C for 12 hr. in He to 86-92% density
 - Peak power 59-165 kW/m, burnup 5-72%
 - Peak Temperatures 700 2450°C (±20%)
 - » Central void and major Pu redistribution at 165 kW/m
- Zircalloy clad specimens in PRTR
 - 19 1.43 cm OD x 251 cm rods, 2.1 wt% PuO₂
 - Swage compacted –6 mesh MgO + -325 mesh PuO₂
 - Failure 3 hours after full power (60 MW)
 - » Irradiation continued 8 days, 23 cm fuel lost
 - Cause: high local temps, F contamination of Pu, water in MgO caused cladding breach.
- USAEC HW-SA-3127, USAEC HW-76300

MgO-PuO₂ Fuel Irradiation Testing

165 kW/m, 2450°C, 72% burnup

More recent work in the U.S. (1970 +)

- Idaho National Engineering and Environmental Laboratory (INEEL)
 - Analysis of material properties, neutronics, and fuel performance of Y-(Zr,Pu)O₂ pellet fuels (1994)
- Los Alamos National Laboratory (LANL)
 - Neutronics calculations, fabrication of small quantity of CaO-(Pu, Zr)O₂ pellets, Xe²⁺ and I⁺ ion beam irradiation (late 1990's)

IMFs Proposed at May 02 FDWG Meeting

- ZrO₂ solid solution
- MgO-based CerCer
- Zr-matrix Cermet
- SiC-based CerCer
- Ni-Al CerMet
- Also consider Advanced MOX

ZrO₂ solid solution

Positive aspects

- Good database
 - » Out-of-pile data
 - » 'Old' irradiation data
 - » Will soon have new irradiation data with erbia poison (PSI)
 - » Current indications of good irradiation performance
- Easy to incorporate burnable poisons in solution

Potential problems

- Thermal conductivity ~half of UO₂
 - » Reported to be stable with irradiation
 - » Power profile shifts to pellet center with Pu depletion
 - » Possible solution annular or filled annular pellets
- Recycle (?)
 - » Slow dissolution, poor solubility in HNO₃
 - » Possible solution in pyroprocessing?

ZrO₂ Solid Solution

Thermal conductivity of Zirconia-based fuels is low, but has small dependence on temperature

MgO matrix fuels

Positive aspects

- Some database
 - » Out-of-pile data
 - » MATINA fast-spectrum data on MgO, MgO-UO₂ (1.2 at% burnup)
 - "Old" irradiation data from ETR, PRTR
- Good thermal conductivity
 - » Indication of 40~60% decrease with neutron irradiation
- Resistant to melting on high-T accidents ($T_m = 2830$ °C)
- Recycle dissolution shouldn't be a problem (?)

Potential problems

- Solubility in coolant water
 - » PRTR experience
 - » Possible fix determine mechanism. May be able to 'alloy' to increase corrosion resistance
- Volatility at high temperatures

Zirconium matrix dispersion fuels

Positive aspects

- Some database on similar fuels (stainless steel-based)
- Fabrication of pins uses fast, simple technique (extrusion)
- Very low particle volume loading
 - » 10-20 vol.% (depending on poison, solid solution)
 - » Should be capable of very high burnup
 - » Cold fuel can operate at high power density if required

Potential Problems

- Particle coating of (Y-Zr,Pu)O₂ likely to be required
- Large amount of zirconium in process impact on recycle
- Commercial sector acceptance of novel fuel

Dispersion Fuel Performance

(stainless steel matrix)

Fuel	Year	Loading, volume %	Surface Temperature	Burnup, % U	Result
UO ₂	1960	20	370°C	40-45	$\Delta \rho_{max}$ =3%
UO ₂	1963	20	538°C	74	full-size plates, some to 84% b.u.
UO ₂	1963	27	315-427°C	61	full-size plates, severe cracking
UO_2	1965	30	~620°C	16.2	fast flux
UO ₂	1965	50	~620°C	13.5	swelling, but no cladding failure
UN	1960	20	930-1090°C	3.5-5.0	$\Delta \rho_{\text{max}} = 1.5\%$, some blisters

- Heavy metal burnup of 93% enriched fuel
- Plate-type fuel
- Data from UKAEA reports
- Performance depends on microstructure and temperature

SiC matrix fuel

Positive aspects

- Good thermal conductivity
- High melting 2700°C (sublimation 2250°C) temperature
- — □-SiC appears to be stable under neutron and H.I. Irradiation
- Reported good corrosion resistance in acidic and neutral solutions at 290° -320°C
- Some data relevant to LWR fuel
 - » Fabrication with CeO₂ (Al₂O₃ and Y₂O₃ sintering aids, AECL-1999)
 - » Thermal conductivity measurements of SiC- CeO_{2,} neutron irradiated pyrolitic SiC
 - » Some recent irradiation data on encapsulated UO₂ pellets in HFR
 - » 72 MeV iodine bombardment produced no swelling (AECL)

Potential problems

Recycle may not possible with HNO₃-based process

Thermal conductivity of SiC matrix fuel

- □= 30-100 W m⁻¹ K⁻¹ at RT
- 5-15 fold reduction at fluence > 2x10²⁴ n/m²
- $\cdot \square \square = f(T)$

Examples of Estimated Fuel Centerline Temperatures

Standard 17x17 PWR rod geometry:

Clad OD = 0.914 cm

Clad ID = 0.886 cm

Fuel OD = 0.784 cm

 $T_{coolant} = 305^{\circ}C$

16 vol.% SiC, MgO, Zr matrix dispersions. Best guess at □_T.

PWR conditions:

Avg. power 18-20 Kw/m Peak power 43-50 kW/m

Advanced Mixed Oxide Fuels

Superfact experiment – fast reactor fuel in Phénix

Name of the	Composition	Density (1)		Origin	O/M	
sample		g/cm3:	% d ⁶		Initial	final
Am 12.4	(Am _{0.5} U _{0.5})O _{2-x}	9.70	93%	GSP	1.33	1.81
Am 13	(Am _{0.5} U _{0.5})O _{2-x}	10.50	95%	copr	1.33	1,92
AmNp 1	(Am _{0.25} Np _{0.25} U _{0.5})O _{2-к}	10.55	95.5%	сорг		
Np 2.3.4	(Np _{0.5} U _{0.5})O₂	10.50	95%	GSP	2.00	2.00
Np 2.3,5	(Np _{0.5} U _{0.5})O ₂	10.50	95%	x-GSP	2.00	2.00
Np 3	(Np _{0,5} U _{0.5})O ₂	10.50	95%	copr	2.00	2.00

Babelot, JRC-ITU-TN-99/03 (1999)

Preparation: 1984-1986

Irradiation: 1986-1988, 324 EFPDs

PIE: 1989 -1992

Superfact Experiment

Fuel Composition	MOX -2%Np	20%Am – 20% Np	45% Np
Peak Linear Power			
BOC (kW/m)	385	174	197
EOC (kW/m)	350	286	301
Peak Burnup (%IHM)	6.6	4.1	4.6
Np transmutation Am tansmutation	30.2%	34.4% 29% (avg.)	26.3

Note: Purex reprocessing demonstrated extraction of U, Pu and 95% of Np for the composition (U, ${\rm Am_{0.2},\,Np_{0.2}}{\rm)O_2}$

Advanced Mixed Oxide Fuel

- Experimental work on thermal conductivity, oxygen potential, fabrication.
- Basis for extrapolation to LWR fuels.

Planning for Tier-1 Fuel Development

Short-term: Provide sufficient technical information by the end of FY06 to DOE and/or Congress on the feasibility of fuels for LWR transmutation to support a decision on program continuation.

Long-term: Development and deployment of a fuel cycle designed for rapid destruction of Pu and potentially Np and Am in commercial light water reactors.

Assumptions

- Deployment should begin within 12-17 year time period (FY15-20) if possible
 - Low risk technology
- Nonproliferation is a key consideration
 - Must mesh with fabrication, inspection, and handling
- Fuel must be compatible with a demonstrated recycle process
- Deployment is in commercial reactors
 - Minimum of new requirements on operations
 - » No additional power or handling restrictions
 - » Reactor safety case not substantially affected
 - Demonstrated accident performance at least as good as UO₂
 - Fuel performance as least as good as UO₂
 - » Should be an economic incentive for operators

'Five-Year' Fuel Development Plan Goals

- Provide data for decision in approximately fiveyears in these areas:
 - » Fuel performance
 - » Fuel recycle (Fabrication)
 - » Core physics
 - » Core safety
 - » Ability to license for use in commercial LWRs
 - » Commercial operator acceptance
- Sort out issue of proliferation resistance and implications on commercial deployment ASAP
- Involve commercial operators/NRC in fuel development process

Long-term IMF Development

- Goal to deploy ASAP drives early schedule
- Deployment possible ~ CY2020
 - Early start on irradiation testing no substitute
 - Requires steady program
 - Depends heavily on cooperation of the fuel
- Requires some risk
 - Decision points are not optimum often making technical decisions without complete data
 - Probably requires transient testing

Proposed LWR Fuel 'Five-Year' Plan

- Evaluate fuel candidates (FY03)
- Establish commercial/NRC contacts (FY03)
- Fabrication of first fuels for LWR-1 early insertion (FY03)
- Out-of-pile characterization (FY03)
- Advanced fuel fabrication development (FY03 FY08)
 - Authorization and equipment upgrades (FY03)
 - Fabrication experiments on advanced IMFs for LWR-1 (FY04)
- Irradiation tests (ATR- FY04)
 - LWR-1 scoping test
 - » Instrumented test facility
 - Relatively short duration test
 - Power slightly > than prototypic
 - » 2-3 IMF + MOX (AMOX)
 - » Insertion beginning FY04
 - » Testing possibly continuing with advanced IMFs
 - » First PIE mid FY06
 - LWR-2 prototype LWR testing to follow in ATR (FY07)

Proposed LWR Fuel Plan: Year One

- Spend first 9 months performing initial screening studies/brainstorming (October '03 – June '03).
 - Preliminary fuel design concepts
 - Fabrication
 - Fuel performance
 - Recycling flowsheets/ranking
 - Proliferation resistance (ability to incorporate features)
 - Physics analysis
 - Core accident performance
 - Operator acceptance/NRC licensing
- Develop fuel selection criteria
- Objectively rank fuels against criteria
- Select 2-3 IMF for irradiation testing (+ MOX reference and AMOX (?))
- Begin fabrication and irradiation test planning for FY04 insertion

Impact of LWR fuel on Tier 2 Fuel Development

- Tier 2 fuels require a longer lead time for deployment due to:
 - Lack of properties data
 - New fabrication technology required
 - Lack of fuel performance data
 - Difficulties in fast-spectrum testing
 - Undefined deployment scenario and operating conditions
- Tier 2 development should continue to achieve deployment ~ 2030
- Some synergy with LWR fuel development may result in cost savings
 - Scientific and technical personnel
 - Pu fabrication equipment and laboratory facilities
 - Thermal spectrum irradiation testing
 - PIE equipment
 - Transient testing
- Program should continue with some modifications
 - Domestic fast-spectrum test space
 - Potentially fewer fuel choices

ATR Fast Flux Booster

Advanced MOX

- Probably (U, Pu, Np)O₂ (low Am content)
- Shorter lead time for deployment due to:
 - Better properties database (Superfact)
 - Similarity to MOX
 - » Some fuel performance data (Superfact)
 - Need for transient testing ?
- Deployment may be possible 2016 ~ 2017
 - One prototype developmental irradiation test prior to LTAs
 - LTA irradiations drive schedule beyond 2008
- Same questions about proliferation resistance
- Should be included in LWR-1 irradiation test

Conclusions

- Does not appear to be a 'perfect' choice of IMF
- Need to provide preliminary data in these areas:
 - » Fuel performance
 - » Fuel recycle (Fabrication)
 - » Core physics
 - » Core safety
 - » Ability to license for use in commercial LWRs
 - » Commercial operator acceptance
- Choice of fuel heavily dependent on current state of technology
 - Could be ready for implementation in 12-17 years
 - Some risk involved in developing new fuels
 - » IMF offers more rapid in-reactor destruction rate than AMOX
 - » Advanced MOX easier, faster to implement